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MKT927: INTRO TO QUANTITATIVE
MARKETING

Prof. Andrey Fradkin

Lecture 2: Experiments and Advertising
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EXPERIMENTS AND POTENTIAL OUTCOMES
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THE POTENTIAL OUTCOMES FRAMEWORK (NEYMAN-RUBIN
CAUSAL MODEL)

Simplest setup.

• Each unit, i, can either be treated (Di = 1) or not treated (Di = 0) and
has an observed outcome YDii .

• The causal/treatment effect of D on Yi is defined as τi = Y1
i − Y

0
i .

• The observed outcome is: Yi = DiY1
i + (1 − Di)Y

0
i .

• The average treatment effect (ATE) is defined as E[τi]. Note, this will
vary based on the population of interest.

Key identification problem: can’t see both Y1
i and Y0

i ,
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Consumer Ad (1) No Ad (0)
1 1 1
2 6 0
3 5 1
4 8 0
5 4 1
6 10 1
7 10 0
8 6 0
9 7 0

10 9 1

Potential Outcomes for Consumers Seeing Ads or Not
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Consumer Ad (1) No Ad (0) Treatment Effect
1 2 1 1
2 6 0 6
3 5 1 4
4 8 0 8
5 4 1 3
6 10 1 9
7 10 0 10
8 6 0 6
9 7 0 7

10 9 1 8
Average 6.7 .5 ATE = 6.2

Potential Outcomes for Consumers Seeing Ads or Not
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RANDOMIZATION

• “Simple” randomization: flip a coin independently for each person.
Problem, can result to numbers of participants being unbalanced.

• “Complete” randomization. If you know how many people are in your
group, can ensure exact split.

• “Blocking”. Can try to reduce the variance of the estimate by ensuring
consistent proportions of units across treatments.

• “Cluster assignment”. Treat everyone in a group the same way.
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DIFFERENCE OF MEANS ESTIMATOR OF ATE

Consumer D Ad (1) No Ad (0) Observed
1 1 2 1 2
2 0 6 0 0
3 1 5 1 5
4 0 8 0 0
5 1 4 1 4
6 1 10 1 10
7 0 10 0 0
8 1 6 0 6
9 0 7 0 0

10 1 9 1 9
Average 6 0 ˆATE = 6
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CAUSAL QUANTITIES OF INTEREST

• Average treatment effect, ATE = E[τi]

• Average treatment effect on treated, ATT = E[τi∣Di = 1]

• Average treatment effect on untreated, ATU = E[τi∣Di = 0]

• Conditional ATE, CATE = E[τi∣Xi = x]

• Intent to treat effect (ITT) vs Complier Average Causal Effect (CACE) in
cases with imperfect compliance.
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ASSUMPTIONS OF CAUSAL INFERENCE

• Stable Unit Treatment Value Assumption (SUTVA) (i.e. no interference,
no spillovers).

• Excludability (i.e. nothing else happened at the same time that is not a
part of the intended treatment).

• For every experimental paper in this class, I want you to ask if either of
these assumptions are violated.
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EXPERIMENT DESIGN

• Treatments: Vary one thing at a time. Design to test mechanisms.

• Consider statistical power. Do power simulations based on pilot
experiments / priors.

• Consider cluster randomization / blocking where appropriate.

• Pilot experiments are critical.
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COVARIATE BALANCE CHECKS

• Why do we do this if we
know we randomized?

• Main reason: Don’t 100%
know randomization was
done correctly. This is a
diagnostic.

• Also check if the
proportions of units in
each treatment group
correspond to the
intended proportions.
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RECOMMENDATIONS OF ECKLES

• Report tests of the null hypothesis that treatment was randomized as
specified.

• Test should account for clustering / blocking.

• Should certainly not use p < 0.05 as a decision criterion here.

• If there is evidence against randomization, authors should investigate.

• They should typically appear in a supplement or appendix — perhaps
as Table S1 or Table A1.
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UNCERTAINTY QUANTIFICATION

Two sources of uncertainty

• Design-based uncertainty. We are interested in causal effects in the
sample. Just by chance we got one randomization vs another.

• Sampling uncertainty. We are interested in causal effects in the
population of interest. We are worried that results in our sample don’t
extrapolate. Just by chance, we may have gotten a sample that is more
or less similar to the population.
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RANDOMIZATION INFERENCE

• Sharp null hypothesis of interest: All treatment effects equal to 0.

• If this is true, we can impute counterfactuals.

• We can simulate a bunch of randomizations under the null and come
up with a distribution of ˆATE estimates. Other test statistics can also be
of interest!

• P-value: The share of simulated test statistics that are greater than the
observed test statistic in the true randomization.
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WHY RANDOMIZATION INFERENCE?

• Does not require asymptotics.

• We are often not interested in sampling uncertainty. For example,
most Prolific/MTurk experiments do not even try to claim that they
have representative samples.

• Accommodates a variety of test statistics.

• Even so, rarely done in practice.
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REDUCING UNCERTAINTY THROUGH COVARIATES

• The most important thing is to collect the right covariates.

• Pre-treatment outcomes are often very good. For example, on an
online platform, the usage of the platform in the month prior to the
experiment. (Variations of this are called “CUPED” in industry).

• Make sure that the covariate isn’t affected by the treatment. Or even
measured after the treatment happened.



17

OLD-SCHOOL COVARIATE ADJUSTMENT

Just run a regression.
Yi j = βXi j + τDi + ϵi j

Subtle issues arise when treatment effects are heterogeneous or groups
have different proportions.
For example see Lin (2013) or Goldsmith-Pinkham et al. (2024) (considers
many treatment groups).
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HOW I PREFER TO DO REGRESSION ADJUSTMENT (LIN (2013))

Demean covariates, and interact with the treatment.

Yi j = βXi j + τDi + τxDi(Xi j − X̄) + ϵi j
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DANGERS OF REGRESSION ADJUSTMENT

• Many degrees of freedom, both in covariates and interaction terms.

• Can lead to p-hacking.

• Solution: Pre-register your analysis plan for a specification if you have
strong prior that it is the right one and/or state the machine learning
method you are going to use.
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MACHINE LEARNING AND EXPERIMENTS

• Improve precision.

• Measure heterogeneity.

• Tie one’s hands if pre-registered.

No “Gold Standard” for doing this, but many good methods.
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POPULAR ML METHODS FOR EXPERIMENTS

We will discuss these when used in specific papers.

• Causal forests (Wager and Athey (2019)).

• Debiased ML + group sorted treatment effects (Chernozhukov and
co-authors, many papers).

• MLRATE (Guo et al. (2021)).
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WHAT TO ASK ABOUT EVERY EXPERIMENTAL PAPER

• What is the causal question of interest?

• What is the experimental design? Unit of randomization, population of
interest, etc.

• Are there any violations of the assumptions of the causal inference
framework?

• What is the uncertainty quantification?

• Might it have been p-hacked?

• Does the analysis actually answer the question of interest?
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ADVERTISING
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WHY ADVERTISE?

Reasons for advertising:

• Persuasive View: Advertising changes preferences.

• Informative View: Advertising reduces search costs.

• Complementary View: Advertising enhances the product’s value (e.g.,
through social signaling).

Bagwell’s framing Is advertising good or bad for welfare?
Marketing framing Are firms advertising in a profit-maximizing way?
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INFORMATIVE ADVERTISING MODELS

Butters (1977):

• Ads help consumers learn about a firm’s existence and price.

• Market delivers socially optimal advertising.

Grossman-Shapiro (1984):

• Includes product differentiation.

• Can result in excessive or insufficient advertising.

Nelson (1970, 1974b):

• For search goods, ads provide direct information.

• For experience goods, ads signal quality and help match tastes.
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ENDOGENOUS SUNK COSTS

Sutton’s “Sunk Costs and Market Structure”:

• Advertising starts as informative or persuasive.

• Over time, creates entry barriers as market visibility becomes
increasingly expensive.

• Related to brand building literature.
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ONLINE VS. OFFLINE ADVERTISING

Fundamental Economic Difference:

• Online advertising reduces targeting costs.

Key Issues:

• Ad effectiveness.

• Auctions design.

• Privacy concerns.

• Antitrust issues.



28

LEWIS & RAO. THE UNFAVORABLE ECONOMICS OF MEASURING
THE RETURNS TO ADVERTISING, QJE 2015.
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STATISTICAL POWER

• The power of an experiment is the probability of detecting a true effect
if it exists.

• The power of an experiment is determined by the sample size, the
effect size, and the standard deviation of the outcome (perhaps
residualized).

• Simple power calculation functions are available in all programming
languages.

• More complicated experiments can be simulated using
simulation-based power analysis.

• Key Challenge: Plugging in plausible values. Running a pilot
experiment helps.
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IMPLICATIONS OF BETTER MEASUREMENT

• Experiments enable ad effectiveness measurement at scale.

• Repeated experimentation optimizes performance.

• Limitations: Understanding who responds and what is truly being
measured.
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GHOST ADS
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GHOST ADS
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GHOST ADS
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GHOST ADS

• Provide valid estimates of ATT.

• Hundreds of advertisers use Google’s ghost ad methodology,
delivering millions of experimental impressions daily.

• More about other measurements issues in Johnson’s Inferno paper.
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BLAKE, NOSKO, AND TADELIS - BRANDED SEARCH ADS
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BLAKE, NOSKO, AND TADELIS - NON-BRANDED SEARCH ADS
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EXPERIMENTAL DESIGN

• Used geographic bid feature to implement it at DMA level.

• Suspended non-brand ads for 30% of DMAs.

• Random subset of DMAs, split evenly to match the serial correlation in
the data.

• Controversial, as they took several splits, found one with matching
correlation and then flipped a coin once!

• Which unit of randomization would you use?
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ANALYZING AN EXPERIMENT WITH A “DIFF-IN-DIFF”
SPECIFICATION VS NAIVE OLS

ln(Salesit) = α1 × ln(Spendit) + εit
ln(Spendit) = α̃1 × AdsOnit + α̃2 × Postt + α̃3 × Groupi + εit
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HETEROGENEITY

Salesimt =
10
∑
m=0

βm × AdsOnimt × θm + δt + γi + θm + εit
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SIMONOV, NOSKO, AND RAO
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METHODOLOGY

• Field Experiment on Bing (9 days, 2014):
– Randomly capped mainline ads (0,1,2,3 vs control=4)
– User-level randomization

• Data:
– 2,500+ brands with >350 searches
– 824 consistently advertising brands

• Measures:
– Click probabilities (paid vs organic)
– Cost Per Incremental Click (CPIC)
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INCREMENTALITY - NO COMPETITOR ADS
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INCREMENTALITY - WITH COMPETITOR ADS
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COST PER INCREMENTAL CLICK DEPENDS ON COMPETITOR ADS

Our results suggest that advertising by competitors completely
changes the story. A single competitor in the top position on the page,
on average, steals 18% of clicks from a high traffic brand, but a
competitor following a focal brand’s ad steals only 1%–2% of clicks. If
this difference is due to strong position effects and not selection
issues, focal brand ads have a strong ROI. This is because the defense
is highly effective (the total CTR returns almost to the case when there
is no advertising): Even though the focal brands must pay for 50 clicks
to get 18 incremental clicks, their CPC is about 10 times less than they
pay on other queries. Putting the pieces together, the implied CPIC is
in an attractive range and, indeed, better than usual.
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CONCLUSION

• Returns to advertising are context dependent.

• Advertising must be thought of as a competitive game, just like pricing.

• Experiments enable ad effectiveness measurement at scale.

• Next lecture: learning about advertising without experiments.



46

NEXT LECTURE

• Observational Data - Please read the first half of chapter 9 in The
Mixtape, and skim the rest.

• Read Shapiro (2018) and Shapire, Hitch, and Tuchman (2021).


